## Joint Variation

1. $P$ varies jointly with $Q$ and $R$. When $P=98, Q=2$ and $R=7$. Find an equation connecting $P$, Q and R . hence find P when $\mathrm{Q}=15$ and $\mathrm{R}=8$.
2. A varies as the square of $B$ and inversely as $C$. When $A$ is $6, B$ is 5 and $C=100$. Calculate A when B is 12 and $\mathrm{C}=72$.
3. $H$ varies directly as the square of $L$ and inversely as the square root of $M$.

When H is 10 , L is 4 and m is 64 .
(a) Find an equation connecting $\mathrm{H}, \mathrm{L}$ and M .
(b) Find H when L is 12 and M is 256.
4. M varies as N and as the square root of P . When $\mathrm{M}=9, \mathrm{~N}=3$ and $\mathrm{P}=36$.

Calculate N when $\mathrm{M}=20$ and $\mathrm{P}=100$.
5. The safe load W of a beam supported at each end varies as the breadth of the beam b and the square of its depth d. It also varies inversely as the distance $x$ between the beams. It is known that $\mathrm{W}=8400$ when $\mathrm{b}=7.5, \mathrm{~d}=5$ and $\mathrm{x}=5$.
(a) Find a formula for W in terms of $\mathrm{b}, \mathrm{d}$ and x .
(b) Find W given $\mathrm{b}=6, \mathrm{~d}=12$ and $\mathrm{x}=4$.
6. The volume, V cubic centimeters, of a certain gas varies directly as the temperature, t , and inversely as the pressure, P mmHg . At a temperature of 2500 and a pressure of 750 mmHg , the volume is 200 cm 3 .
(a) Find a formula connecting V, t and P. (b) Calculate the volume of the gas at a temperature of 3500 and a pressure of 1000 mmHg .
7. The time, t seconds, taken by a child to slide down a chute varies directly as the length, L meters, of the chute and the inversely as the square root of the height, H meters, of the chute above the ground. It takes 10 seconds to slide down a chute 3.75 meters long and 2.25 meters high. How long does it take to slide down a chute 5 meters long, whic is 2.56 meters high?
8. The weight, W kilograms, of a cylindrical metal pole varies as its length, $L$ centimeters, and as the square of its diameter, D centimeters. A pole 120 cm long and with diameter 8 cm weighs 14.4 kg . Calculate the length of a pole with diameter 12 cm and weighing 67.5 kilograms.
9. The number of liters of petrol, L , used by a car on a journey varies directly as the distance, d km , travelled and as the square root of the average speed, s kmph . The car uses 30 liters of petrol for a journey of 550 km at an average speed of 81 kmph .
(a) Find a formula connecting $\mathrm{L}, \mathrm{d}$ and s .
(b) How many liters of petrol would be used on a journey of 693 km at an average speed of 100kmph?
10. The time, T minutes, taken for a stadium to empty varies directly as the number of spectators, S, and inversely as the number of open exits, E. It takes 12 minutes for a stadium to empty when there are 20000 spectators and 20 open exits.
(a) Find a formula connecting T, s and E.
(b) How long does it take to empty the stadium when there are 36000 spectators and 24 open exits?
11. The force, F Newtons, needed to stop a train varies as the square of the speed, S kmph, of the train and inversely as the stopping distance, D meters. It is known a force of 300 Newtons is required to stop a train travelling at a speed of 60 kmph in a distance of 1200 meters. (a) calculate the force needed to stop a train travelling at a speed of 50 kmph in a distance of 800 meters.
(b) Calculate the distance it would take a train to stop if it was travelling at 40 kmph and a force of 256 Newtons was applied.
12. The time, T hours, taken to harvest an orchard varies directly as the area, A m squared, of the orchard and inversely as the number of workers used, N. An orchard with an area of 1200 m 2 can be harvested by 8 workers in a time of 6 hours.

How much time could have been saved if 10 workers had been used to harvest the orchard?
13. As the drum of a washing machine spins it exerts a force on the clothes inside it, forcing them against the side of the drum. The force, F Newtons, varies directly as the square of the speed of the drum, S meters per second, and the mass, M kilograms, of the clothes in the drum and also inversely as the radius of the drum, R centimeters. A drum of radius 20 cm spinning at 20 mps and containing 2 kg of clothes exerts a force of 33.75 Newtons. Calculate the force exerted if this machine spins at the same speed but the weight of clothes is doubled.
14. The electrical resistance, R , of copper wire varies directly as its length, L meters, and inversely as the square of its diameter D millimeters. A piece of copper wire 8 meters long with diameter 4 millimeters has resistance 7.5. Calculate the resistance of a piece of copper wire 10 meters long with diameter 2.5 millimeters.

